Identification of an mRNA-decapping regulator implicated in X-linked mental retardation.
نویسندگان
چکیده
Two major decapping enzymes are involved in the decay of eukaryotic mRNA, Dcp2 and DcpS. Despite the detection of robust DcpS decapping activity in cell extract, minimal to no decapping is detected from human Dcp2 (hDcp2) in extract. We now demonstrate that one reason for the lack of detectable hDcp2 activity in extract is due to the presence of inhibitory trans factor(s). Furthermore, we demonstrate that a previously identified testis-specific protein of unknown function implicated in nonspecific X-linked mental retardation, VCX-A, can function as an inhibitor of hDcp2 decapping in vitro and in cells. VCX-A is a noncanonical cap-binding protein that binds to capped RNA but not cap structure lacking an RNA. Its cap association is enhanced by hDcp2 to further augment the ability of VCX-A to inhibit decapping. Our data demonstrate that VCX-A can regulate mRNA stability and that it is an example of a tissue-specific decapping regulator.
منابع مشابه
Modulation of neuritogenesis by a protein implicated in X-linked mental retardation.
Posttranscriptional regulation is an important control mechanism governing gene expression in neurons. We recently demonstrated that VCX-A, a protein implicated in X-linked mental retardation, is an RNA-binding protein that specifically binds the 5' end of capped mRNAs to prevent their decapping and decay. Previously, expression of VCX-A was reported to be testes restricted. Consistent with a r...
متن کاملMutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome)
The ATR-X syndrome is an X-linked disorder comprising severe psychomotor retardation, characteristic facial features, genital abnormalities, and alpha-thalassemia. We have shown that ATR-X results from diverse mutations of XH2, a member of a subgroup of the helicase superfamily that includes proteins involved in a wide range of cellular functions, including DNA recombination and repair (RAD16, ...
متن کاملEvidence that fragile X mental retardation protein is a negative regulator of translation.
Fragile X syndrome is a common form of inherited mental retardation. Most fragile X patients exhibit mutations in the fragile X mental retardation gene 1 (FMR1) that lead to transcriptional silencing and hence to the absence of the fragile X mental retardation protein (FMRP). Since FMRP is an RNA-binding protein which associates with polyribosomes, it had been proposed to function as a regulato...
متن کاملAnalysis of FMRP mRNA target datasets reveals highly associated mRNAs mediated by G-quadruplex structures formed via clustered WGGA sequences.
Fragile X syndrome, a common cause of intellectual disability and a well-known cause of autism spectrum disorder, is the result of loss or dysfunction of fragile X mental retardation protein (FMRP), a highly selective RNA-binding protein and translation regulator. A major research priority has been the identification of the mRNA targets of FMRP, particularly as recent studies suggest an excess ...
متن کاملNovel mental retardation-epilepsy syndrome linked to Xp21.1-p11.4.
We evaluated a kindred with X-linked mental retardation and epilepsy. Seven affected males with mild to moderate mental retardation developed seizures (primarily generalized, tonic-clonic, and atonic) that began on average at 6.8 months of age (range, 4 to 14 months). These patients did not have a history of infantile spasms. There were no dysmorphic features. Other than mental retardation, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2006